Evaluation of geohazards in the Cape Girardeau area using LiDAR and GIS, Southeast Missouri, USA

Author:

Ilesanmi Olufeyisayo B.ORCID,Rogers J. DavidORCID,Oboh-Ikuenobe Francisca E.ORCID

Abstract

AbstractThe New Madrid Seismic Zone (NMSZ) has historically recorded some of the largest intensity earthquakes in North America, including significant earth movements that resulted in about 2000 felt earthquakes during 1811–1812. The region continues to experience mass wasting due to earth movements. The aim of this study is to understand the influence of geologic variables on mass wasting processes in the greater Cape Girardeau area, which forms the commercial center of Missouri's fertile "Bootheel" region. Earth movement susceptibility was evaluated in Cape Girardeau and Bollinger counties and portions of Stoddard and Scott counties by mapping potential landslide features on topographic maps, field verification of such features, and geospatial analysis of recent LiDAR imagery. In order to evaluate the changes in surface morphology, slope inclination, hillshade aspect, hydrology, lithology, faults, precipitation, seismicity, sinkholes, and geohydrology were considered. Geographically weighted analysis of the geomorphologic variables identified zones of relative risk. In addition, data were evaluated for oil and gas pipelines, bridges, utilities, and open pit mines associated with mass wasting on public and economic infrastructure. The results suggest that anthropogenic changes commonly associated with urban development impact land use, runoff, infiltration, and slope failures, while sustained precipitation and seismic ground shaking tend to trigger landslides. The scale of mass wasting in the study area was robust, varying from as small as one-half hectare to as much as 67 km2. The vulnerability of the population in susceptible areas tends to increase at the lower elevations and on alluvial flood plains. Thus, hazard susceptibility evaluation can be useful in both community planning as well as emergency preparedness.

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Geology,Pollution,Soil Science,Water Science and Technology,Environmental Chemistry,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3