A review on the geotechnical design and optimisation of ultra-long ore passes for deep mass mining

Author:

Salmi Ebrahim F.,Phan Tan,Sellers Ewan J.,Stacey Thomas R.

Abstract

AbstractEnhancing mine energy efficiency and productivity necessitates the implementation of longer ore passes, exceeding 300 m, to optimise material transport in underground mass mining. This research has revealed sporadic historical use of extremely long ore passes, stretching beyond 500 m and reaching up to 650–700 m, in both surface and underground settings. However, the scarcity of available data related to the primary engineering, geological, and geotechnical risks associated with the design, implementation, operation, and maintenance of long ore passes implies an urgent need for research into strategies to mitigate uncertainties in the design and optimisation of these passes. A comprehensive gap analysis from available ore pass projects worldwide, compiling various geological and geotechnical parameters affecting the ore passes’ design and optimisation, identifies new techniques for designing these critical rock structures, highlights deficiencies in current methodologies, and shows areas for enhancement through expert elicitation techniques and risk assessment methods. Key utilisation scenarios for ore passes exceeding 300 m in length were also identified within the research and categorised into the design phase, emphasising stability, inclination, and gate loading, and the construction phase, including drilling, blasting, raiseboring, and support and lining, and the operational phase, encompassing flow dynamics, hang-ups, and ore fragmentation consequences. Insights gleaned from this comprehensive literature review and gap analysis provide a robust foundation for geotechnical engineers involved in the design of long and ultra-long ore passes for deep mass mining. These findings can empower engineers by enabling them to proactively anticipate, effectively respond to, and continually learn from the challenges inherent in the design, construction, operation, and maintenance of ultra-long and long ore passes. Further research is needed to facilitate energy-efficient material transfer in deep mass mining, including proper design and implementation of passes in uncertain geological conditions. This includes techniques for investigating the long-term stability of ore passes, enhancing the understanding of the risk of structural failure, improving characterisation of rock fragments, investigating flow dynamics, identifying better liner materials, methods for determining optimal pass placement, improving surveying and monitoring techniques, quantifying the rheological behaviour of muck and wet muck for flowability assessment, assessing the impact of mining-induced stresses on the stability of long ore passes, and developing safer and more efficient techniques for the mitigation and recovery of hang-ups.

Funder

Cave Mining 2040 Horizon 1 and CSIRO

Commonwealth Scientific and Industrial Research Organisation

Publisher

Springer Science and Business Media LLC

Reference202 articles.

1. AGA (2019) Estudio de Impacto Ambiental (Environmental impact investigations). Anglo Gold Ashanti (AGA)

2. An H, Song Y, Liu H, Han H (2021) Combined finite-discrete element modelling of dynamic rock fracture and fragmentation during mining production process by blast. Shock Vib 2021:1–18

3. Ascencio JA (1985) A mine production planning approach for block caving mines. MSc, Colorado School of Mines, p 256

4. Aytaman V (1960) Causes of hanging in ore chutes and its solution. Can Min J 81:77–81

5. Azhari F (2022) Automated crack detection and characterisation from 3D point clouds of unstructured surfaces. PhD, Queensland University of Technology, p 167

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3