Abstract
AbstractThe Oxford Clay from Bletchley, the Kimmeridge Clay from Kimmeridge Bay, Dorset, and Tertiary mud (Wittering Formation) from Whitecliff, Isle of Wight, United Kingdom were used as sorbent samples because of their distinctive organic material characteristics (Amorphous organic matter rich and/or phytoclast rich). Organic material was isolated for identification and analysis using a non-acid extraction method (heavy liquid) extraction and traditional methods involving HF digestion. These organic materials were then used to determine influences of extraction on hydrophobic organic contaminants, (toluene and naphthalene) sorption. Organic petrology classification was applied to identify the various types of isolated organic material. Amorphous organic matter from the Kimmeridge Clay displayed a higher sorption capacity (Sorption–desorption distribution coefficient (Kd), Kd = 6,481, 59, 670; for toluene and naphthalene, respectively) compared to literature values. Amorphous organic matter-rich sorbent extracts demonstrated a higher absorption capacity than the phytoclast-rich sorbents (e.g., Wittering Formation, Kd = 219, 10, 134; for toluene and naphthalene, respectively). Implications of results in landfill design/risk assessment and modelling are discussed.
Funder
Engineering and Physical Sciences Research Council
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Earth-Surface Processes,Geology,Pollution,Soil Science,Water Science and Technology,Environmental Chemistry,Global and Planetary Change
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献