The influence of solid-phase organic carbon on the sorption of hydrophobic organic pollutants in landfill barriers, UK

Author:

Huang Pin-RuORCID,Stringfellow Anne,Smallman Dave,Marshall John

Abstract

AbstractThe Oxford Clay from Bletchley, the Kimmeridge Clay from Kimmeridge Bay, Dorset, and Tertiary mud (Wittering Formation) from Whitecliff, Isle of Wight, United Kingdom were used as sorbent samples because of their distinctive organic material characteristics (Amorphous organic matter rich and/or phytoclast rich). Organic material was isolated for identification and analysis using a non-acid extraction method (heavy liquid) extraction and traditional methods involving HF digestion. These organic materials were then used to determine influences of extraction on hydrophobic organic contaminants, (toluene and naphthalene) sorption. Organic petrology classification was applied to identify the various types of isolated organic material. Amorphous organic matter from the Kimmeridge Clay displayed a higher sorption capacity (Sorption–desorption distribution coefficient (Kd), Kd = 6,481, 59, 670; for toluene and naphthalene, respectively) compared to literature values. Amorphous organic matter-rich sorbent extracts demonstrated a higher absorption capacity than the phytoclast-rich sorbents (e.g., Wittering Formation, Kd = 219, 10, 134; for toluene and naphthalene, respectively). Implications of results in landfill design/risk assessment and modelling are discussed.

Funder

Engineering and Physical Sciences Research Council

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Geology,Pollution,Soil Science,Water Science and Technology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3