Author:
Bakhti Pouya,Farzan Yasaman,Pascoli Silvia
Abstract
Abstract
FASERν is a newly proposed experiment which will take data in run III of the LHC during 2021–2023. It will be located in front of the FASER detector, 480 m away from the ATLAS interaction point in the forward direction. Its main goal is to detect neutrinos of all flavors produced at the interaction point with superb precision in reconstructing charged tracks. This capability makes FASERν an ideal setup for uncovering the pattern and properties of a light dark sector. We demonstrate this capability for a well-motivated class of models with a dark matter candidate of mass around a few GeV. Dark matter annihilates to a pair of intermediate neutral particles that subsequently decay into the standard model charged fermions. We show how FASERν can shed light on the structure of the dark sector by unravelling the decay chain within such models.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference40 articles.
1. J.L. Feng, I. Galon, F. Kling and S. Trojanowski, ForwArd Search ExpeRiment at the LHC, Phys. Rev. D 97 (2018) 035001 [arXiv:1708.09389] [INSPIRE].
2. FASER collaboration, Technical Proposal for FASER: ForwArd Search ExpeRiment at the LHC, arXiv:1812.09139 [INSPIRE].
3. FASER collaboration, Detecting and Studying High-Energy Collider Neutrinos with FASER at the LHC, Eur. Phys. J. C 80 (2020) 61 [arXiv:1908.02310] [INSPIRE].
4. FASER collaboration, Technical Proposal: FASERν, arXiv:2001.03073 [INSPIRE].
5. FASER collaboration, FASER’s physics reach for long-lived particles, Phys. Rev. D 99 (2019) 095011 [arXiv:1811.12522] [INSPIRE].
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献