Abstract
Abstract
We analyze phase transitions in the minimal extension of the SM with a real singlet scalar field. The novelty of our study is that we identify and analyze in detail the region of parameter space where the first order phase transition can occur and in particular when the bubbles with true vacuum can reach relativistic velocities. This region is interesting since it can lead to the new recently discussed baryogenesis and Dark Matter production mechanisms. We fully analyze different models for the production of Dark Matter and baryogenesis as well as the possibilities of discovery at the current and future experiments.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference107 articles.
1. A. Azatov, M. Vanvlasselaer and W. Yin, Baryogenesis via relativistic bubble walls, JHEP 10 (2021) 043 [arXiv:2106.14913] [INSPIRE].
2. A. Azatov, M. Vanvlasselaer and W. Yin, Dark Matter production from relativistic bubble walls, JHEP 03 (2021) 288 [arXiv:2101.05721] [INSPIRE].
3. I. Baldes, S. Blasi, A. Mariotti, A. Sevrin and K. Turbang, Baryogenesis via relativistic bubble expansion, Phys. Rev. D 104 (2021) 115029 [arXiv:2106.15602] [INSPIRE].
4. A.D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [INSPIRE].
5. V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献