Author:
Sazegar Ali Reza,Assadi Amanollah,Rabieimotlagh Omid
Publisher
Springer Science and Business Media LLC
Reference14 articles.
1. Ansari, S.I.: Existence of hypercyclic operators on topological vector spaces. J. Funct. Anal. 148, 384–390 (1997)
2. Bayart, F., Matheron, E.: Hypercyclic operators failing the hypercyclicity criterion on classical Banach spaces. J. Funct. Anal. 250, 426–441 (2007)
3. Bonet, J., Martinez-Gimenez, F., Peris, A.: Universal and chaotic multipliers on spaces of operators. J. Math. Anal. Appl. 297, 599–611 (2004)
4. Chan, K.C., Taylor Jr, R.D.: Hypercyclic subspaces of a Banach space. Integral Equ. Oper. Theory 41, 381–388 (2001)
5. De la Rosa, M., Read, C.: A hypercyclic operator whose direct sum $$T \oplus T$$ T ⊕ T is not hypercyclic. J Oper. Theory 61, 369–380 (2009)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Density of convex-cyclic vectors;Rendiconti del Circolo Matematico di Palermo Series 2;2018-10-13