Provability logic: models within models in Peano Arithmetic

Author:

Berarducci AlessandroORCID,Mamino Marcello

Abstract

AbstractIn 1994 Jech gave a model-theoretic proof of Gödel’s second incompleteness theorem for Zermelo–Fraenkel set theory in the following form: $${{\,\mathrm{\mathrm {ZF}}\,}}$$ ZF does not prove that $${{\,\mathrm{\mathrm {ZF}}\,}}$$ ZF has a model. Kotlarski showed that Jech’s proof can be adapted to Peano Arithmetic with the role of models being taken by complete consistent extensions. In this note we take another step in the direction of replacing proof-theoretic by model-theoretic arguments. We show, without the need of formalizing the proof of the completeness theorem within $${{\,\mathrm{\mathrm {PA}}\,}}$$ PA , that the existence of a model of $${{\,\mathrm{\mathrm {PA}}\,}}$$ PA of complexity $$\Sigma ^0_2$$ Σ 2 0 is independent of $${{\,\mathrm{\mathrm {PA}}\,}}$$ PA , where a model is identified with the set of formulas with parameters which hold in the model. Our approach is based on a new interpretation of the provability logic of Peano Arithmetic where $$\Box \phi $$ ϕ is defined as the formalization of “$$\phi $$ ϕ is true in every $$\Sigma ^0_2$$ Σ 2 0 -model”.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference16 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3