Abstract
AbstractThe singular set of a viscosity solution to a Hamilton–Jacobi equation is known to propagate, from any noncritical singular point, along singular characteristics which are curves satisfying certain differential inclusions. In the literature, different notions of singular characteristics were introduced. However, a general uniqueness criterion for singular characteristics, not restricted to mechanical systems or problems in one space dimension, is missing at the moment. In this paper, we prove that, for a Tonelli Hamiltonian on $$\mathbb {R}^2$$
R
2
, two different notions of singular characteristics coincide up to a bi-Lipschitz reparameterization. As a significant consequence, we obtain a uniqueness result for the class of singular characteristics that was introduced by Khanin and Sobolevski in the paper [On dynamics of Lagrangian trajectories for Hamilton-Jacobi equations. Arch. Ration. Mech. Anal., 219(2):861–885, 2016].
Funder
Istituto Nazionale di Alta Matematica “Francesco Severi”
Ministero dell’Istruzione, dell’Università e della Ricerca
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献