Abstract
AbstractIn this paper we establish a variation-diminishing type estimate for the multivariate Kantorovich sampling operators with respect to the concept of multidimensional variation introduced by Tonelli. A sharper estimate can be achieved when step functions with compact support (digital images) are considered. Several examples of kernels have been presented.
Funder
Università degli Studi di Perugia
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
Fondazione Cassa di Risparmio di Perugia
Publisher
Springer Science and Business Media LLC
Reference38 articles.
1. Allasia, G., Cavoretto, R., De Rossi, A.: A class of spline functions for landmark-based image registration. Math. Methods Appl. Sci. 35, 923–934 (2012)
2. Ambrosio, L., Di Marino, S.: Equivalent definitions of BV space and of total variation on metric measure spaces. J. Funct. Anal. 266(7), 4150–4188 (2014)
3. Angeloni, L.: Approximation results with respect to multidimensional $$\varphi $$-variation for nonlinear integral operators. Z. Anal. Anwendungen 32(1), 103–128 (2013)
4. Angeloni, L.: A new concept of multidimensional variation in the sense of Riesz and applications to integral operators. Mediterr. J. Math., 14(4), 149 (2017)
5. Angeloni, L., Costarelli, D., Vinti, G.: A characterization of the convergence in variation for the generalized sampling series. Ann. Acad. Sci. Fenn. Math. 43, 755–767 (2018)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献