Abstract
AbstractIn view of the recent proofs of the P=W conjecture, the present paper reviews and relates the latest results in the field, with a view on how P=W phenomena appear in multiple areas of algebraic geometry. As an application, we give a detailed sketch of the proof of P=W by Maulik, Shen and Yin.
Funder
Università degli Studi di Modena e Reggio Emilia
Publisher
Springer Science and Business Media LLC
Reference68 articles.
1. Arinkin, D.: Cohomology of line bundles on compactified Jacobians. Math. Res. Lett. 18(6), 1215–1226 (2011)
2. Arinkin, D.: Autoduality of compactified Jacobians for curves with plane singularities. J. Algebraic Geom. 22(2), 363–388 (2013)
3. Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differential Geom. 18(4):755–782 (1984), (1983)
4. Beauville, A.: Sur l’anneau de Chow d’une variété abélienne. Math. Ann. 273(4), 647–651 (1986)
5. Beauville, A., Narasimhan, M.S., Ramanan, S.: Spectral curves and the generalised theta divisor. J. Reine Angew. Math. 398, 169–179 (1989)