Abstract
AbstractDeep learning of the artificial neural networks (ANN) can be treated as a particular class of interpolation problems. The goal is to find a neural network whose input-output map approximates well the desired map on a finite or an infinite training set. Our idea consists of taking as an approximant the input-output map, which arises from a nonlinear continuous-time control system. In the limit such control system can be seen as a network with a continuum of layers, each one labelled by the time variable. The values of the controls at each instant of time are the parameters of the layer.
Funder
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
Università degli Studi di Firenze
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Numerical Analysis,Algebra and Number Theory,Control and Systems Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献