Phenotypic characterization and gene mapping of hybrid necrosis in Triticum durum–Haynaldia villosa amphiploids

Author:

Liu Yangqi,Liu Jinhong,Huang Zhenpu,Fan Kaiwen,Guo Xinshuo,Xing LipingORCID,Cao Aizhong

Abstract

Abstract Key message Phenotypical, physiological and genetic characterization was carried out on the hybrid necrosis gene from Haynaldia villosa, and the related gene Ne-V was mapped to chromosome arm 2VL. Abstract Introducing genetic variation from wild relatives into common wheat through wide crosses is a vital strategy for enriching genetic diversity and promoting wheat breeding. However, hybrid necrosis, a genetic autoimmunity syndrome, often occurs in the offspring of interspecific or intraspecific crosses, restricting both the selection of hybrid parents and the pyramiding of beneficial genes. To utilize the germplasms of Haynaldia villosa (2n = 2x = 14, VV), we conducted wide hybridization between durum wheat (2n = 4x = 28, AABB) and multiple H. villosa accessions to synthesize the amphiploids (2n = 6x = 42, AABBVV). This study revealed that 61.5% of amphiploids derived from the above crosses exhibited hybrid necrosis, with some amphiploids even dying before reaching maturity. However, the initiation time and severity of necrosis varied dramatically among the progenies, suggesting that there were multiple genetic loci or multiple alleles in the same genetic locus conferring to hybrid necrosis in H. villosa accessions. Genetic analysis was performed on the F2 and derived F2:3 populations, which were constructed between amphiploid STH59-1 with normal leaves and amphiploid STH59-2 with necrotic leaves. A semidominant hybrid necrosis-related gene, Ne-V, was mapped to an 11.8-cM genetic interval on the long arm of chromosome 2V, representing a novel genetic locus identified in Triticum-related species. In addition, the hybrid necrosis was correlated with enhanced H2O2 accumulation and cell death, and it was influenced by the temperature and light. Our findings provide a foundation for cloning the Ne-V gene and exploring its molecular mechanism.

Funder

National Key Research and Development Program of China

the “JBGS” Project of Seed Industry Revitalization in Jiangsu Province

Special Fund for Independent Innovation of Agricultural Science and Technology in Jiangsu

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3