Accuracy of prediction from multi-environment trials for new locations using pedigree information and environmental covariates: the case of sorghum (Sorghum bicolor (L.) Moench) breeding

Author:

Tadese DiribaORCID,Piepho Hans‑Peter,Hartung Jens

Abstract

Abstract Key messages We investigate a method of extracting and fitting synthetic environmental covariates and pedigree information in multilocation trial data analysis to predict genotype performances in untested locations. Abstract Plant breeding trials are usually conducted across multiple testing locations to predict genotype performances in the targeted population of environments. The predictive accuracy can be increased by the use of adequate statistical models. We compared linear mixed models with and without synthetic covariates (SCs) and pedigree information under the identity, the diagonal and the factor-analytic variance-covariance structures of the genotype-by-location interactions. A comparison was made to evaluate the accuracy of different models in predicting genotype performances in untested locations using the mean squared error of predicted differences (MSEPD) and the Spearman rank correlation between predicted and adjusted means. A multi-environmental trial (MET) dataset evaluated for yield performance in the dry lowland sorghum (Sorghum bicolor (L.) Moench) breeding program of Ethiopia was used. For validating our models, we followed a leave-one-location-out cross-validation strategy. A total of 65 environmental covariates (ECs) obtained from the sorghum test locations were considered. The SCs were extracted from the ECs using multivariate partial least squares analysis and subsequently fitted in the linear mixed model. Then, the model was extended accounting for pedigree information. According to the MSEPD, models accounting for SC improve predictive accuracy of genotype performances in the three of the variance-covariance structures compared to others without SC. The rank correlation was also higher for the model with the SC. When the SC was fitted, the rank correlation was 0.58 for the factor analytic, 0.51 for the diagonal and 0.46 for the identity variance-covariance structures. Our approach indicates improvement in predictive accuracy with SC in the context of genotype-by-location interactions of a sorghum breeding in Ethiopia.

Funder

German Academic Exchange Service

Universität Hohenheim

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3