Transcriptome changes in the developing sugarcane culm associated with high yield and early-season high sugar content

Author:

Perlo Virginie,Margarido Gabriel R. A.,Botha Frederik C.,Furtado Agnelo,Hodgson-Kratky Katrina,Correr Fernando H.,Henry Robert J.ORCID

Abstract

AbstractSugarcane, with its exceptional carbon dioxide assimilation, biomass and sugar yield, has a high potential for the production of bio-energy, bio-plastics and high-value products in the food and pharmaceutical industries. A crucial challenge for long-term economic viability and environmental sustainability is also to optimize the production of biomass composition and carbon sequestration. Sugarcane varieties such as KQ228 and Q253 are highly utilized in the industry. These varieties are characterized by a high early-season sugar content associated with high yield. In order to investigate these correlations, 1,440 internodes were collected and combined to generate a set of 120 samples in triplicate across 24 sugarcane cultivars at five different development stages. Weighted gene co-expression network analysis (WGCNA) was used and revealed for the first time two sets of co-expressed genes with a distinct and opposite correlation between fibre and sugar content. Gene identification and metabolism pathways analysis was used to define these two sets of genes. Correlation analysis identified a large number of interconnected metabolic pathways linked to sugar content and fibre content. Unsupervised hierarchical clustering of gene expression revealed a stronger level of segregation associated with the genotypes than the stage of development, suggesting a dominant genetic influence on biomass composition and facilitating breeding selection. Characterization of these two groups of co-expressed key genes can help to improve breeding program for high fibre, high sugar species or plant synthetic biology.

Funder

Sugar Research Australia

Australian Research Council

The University of Queensland

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Agronomy and Crop Science,General Medicine,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3