A multi-environment framework to evaluate the adaptation of wheat (Triticum aestivum) to heat stress
-
Published:2022-01-20
Issue:4
Volume:135
Page:1191-1208
-
ISSN:0040-5752
-
Container-title:Theoretical and Applied Genetics
-
language:en
-
Short-container-title:Theor Appl Genet
Author:
Telfer PaulORCID, Edwards James, Taylor Julian, Able Jason A., Kuchel Haydn
Abstract
Abstract
Key message
Assessing adaptation to abiotic stresses such as high temperature conditions across multiple environments presents opportunities for breeders to target selection for broad adaptation and specific adaptation.
Abstract
Adaptation of wheat to heat stress is an important component of adaptation in variable climates such as the cereal producing areas of Australia. However, in variable climates stress conditions may not be present in every season or are present to varying degrees, at different times during the season. Such conditions complicate plant breeders’ ability to select for adaptation to abiotic stress. This study presents a framework for the assessment of the genetic basis of adaptation to heat stress conditions with improved relevance to breeders’ selection objectives. The framework was applied here with the evaluation of 1225 doubled haploid lines from five populations across six environments (three environments selected for contrasting temperature stress conditions during anthesis and grain fill periods, over two consecutive seasons), using regionally best practice planting times to evaluate the role of heat stress conditions in genotype adaptation. Temperature co-variates were determined for each genotype, in each environment, for the anthesis and grain fill periods. Genome-wide QTL analysis identified performance QTL for stable effects across all environments, and QTL that illustrated responsiveness to heat stress conditions across the sampled environments. A total of 199 QTL were identified, including 60 performance QTL, and 139 responsiveness QTL. Of the identified QTL, 99 occurred independent of the 21 anthesis date QTL identified. Assessing adaptation to heat stress conditions as the combination of performance and responsiveness offers breeders opportunities to select for grain yield stability across a range of environments, as well as genotypes with higher relative yield in stress conditions.
Funder
South Australian Grain Industry Trust Fund The University of Adelaide
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Agronomy and Crop Science,General Medicine,Biotechnology
Reference102 articles.
1. Alaux M, Rogers J, Letellier T, Flores R, Alfama F, Pommier C, Mohellibi N, Durand S, Kimmel E, Michotey C, Guerche C, Loaec M, Lainé M, Steinbach D, Choulet F, Rimbert H, Leroy P, Guilhot N, Salse J, Feuillet C, Paux E, Eversole K, Adam-Blondon A-F, Quesneville H (2018) Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol 19:111 2. Alexander BM, Hayman PT, McDonald GK, Talukder ASMHM, Gill GS (2010) Characterising the risk of heat stress on wheat in South Australia: meteorology, climatology and the design of a field heating chamber. In: Proceedings of the 15th Australian agronomy conference, Lincoln, New Zealand 3. Ali MB, Ibrahim AH, Malla S, Rudd J, Hays DB (2013) Family-based QTL mapping of heat stress tolerance in primitive tetraploid wheat (Triticum turgidum L.). Euphytica 192:189–203 4. Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T (2012a) Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor Appl Genet 125:255–271 5. Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T (2012b) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet 125:1473–1485
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|