Identification of major quantitative trait loci and candidate genes for seed weight in soybean

Author:

Xu Mengge,Kong Keke,Miao Long,He Jianbo,Liu Tengfei,Zhang Kai,Yue Xiuli,Jin Ting,Gai Junyi,Li YanORCID

Abstract

Abstract Key message Four major quantitative trait loci for 100-seed weight were identified in a soybean RIL population under five environments, and the most likely candidate genes underlying these loci were identified. Abstract Seed weight is an important target of soybean breeding. However, the genes underlying the major quantitative trait loci (QTL) controlling seed weight remain largely unknown. In this study, a soybean population of 300 recombinant inbred lines (RILs) derived from a cross between PI595843 (PI) and WH was used to map the QTL and identify candidate genes for seed weight. The RIL population was genotyped through whole genome resequencing, and phenotyped for 100-seed weight under five environments. A total of 38 QTL were detected, and four major QTL, each explained at least 10% of the variation in 100-seed weight, were identified. Six candidate genes within these four major QTL regions were identified by analyses of their tissue expression patterns, gene annotations, and differential gene expression levels in soybean seeds during four developmental stages between two parental lines. Further sequence variation analyses revealed a C to T substitution in the first exon of the Glyma.19G143300, resulting in an amino acid change between PI and WH, and thus leading to a different predicted kinase domain, which might affect its protein function. Glyma.19G143300 is highly expressed in soybean seeds and encodes a leucine-rich repeat receptor-like protein kinase (LRR-RLK). Its predicted protein has typical domains of LRR-RLK family, and phylogenetic analyses reveled its similarity with the known LRR-RLK protein XIAO (LOC_Os04g48760), which is involved in controlling seed size. The major QTL and candidate genes identified in this study provide useful information for molecular breeding of new soybean cultivars with desirable seed weight.

Funder

National Key Research and Development Program of China

Core Technology Development for Breeding Program of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Agronomy and Crop Science,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3