Abstract
Abstract
Key message
Four major quantitative trait loci for 100-seed weight were identified in a soybean RIL population under five environments, and the most likely candidate genes underlying these loci were identified.
Abstract
Seed weight is an important target of soybean breeding. However, the genes underlying the major quantitative trait loci (QTL) controlling seed weight remain largely unknown. In this study, a soybean population of 300 recombinant inbred lines (RILs) derived from a cross between PI595843 (PI) and WH was used to map the QTL and identify candidate genes for seed weight. The RIL population was genotyped through whole genome resequencing, and phenotyped for 100-seed weight under five environments. A total of 38 QTL were detected, and four major QTL, each explained at least 10% of the variation in 100-seed weight, were identified. Six candidate genes within these four major QTL regions were identified by analyses of their tissue expression patterns, gene annotations, and differential gene expression levels in soybean seeds during four developmental stages between two parental lines. Further sequence variation analyses revealed a C to T substitution in the first exon of the Glyma.19G143300, resulting in an amino acid change between PI and WH, and thus leading to a different predicted kinase domain, which might affect its protein function. Glyma.19G143300 is highly expressed in soybean seeds and encodes a leucine-rich repeat receptor-like protein kinase (LRR-RLK). Its predicted protein has typical domains of LRR-RLK family, and phylogenetic analyses reveled its similarity with the known LRR-RLK protein XIAO (LOC_Os04g48760), which is involved in controlling seed size. The major QTL and candidate genes identified in this study provide useful information for molecular breeding of new soybean cultivars with desirable seed weight.
Funder
National Key Research and Development Program of China
Core Technology Development for Breeding Program of Jiangsu Province
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Agronomy and Crop Science,General Medicine,Biotechnology
Reference95 articles.
1. Adamski NM, Anastasiou E, Eriksson S, O’Neill CM, Lenhard M (2009) Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling. Proc Natl Acad Sci USA 106:20115–20120
2. Akond M, Liu S, Schoener L, Anderson JA, Kantartzi SK, Meksem K, Song Q, Wang D, Wen Z, Lightfoot DA, Kassem MA (2013) A SNP-based genetic linkage map of soybean using the SoySNP6K Illumina Infinium BeadChip genotyping array. J Plant Genome Sci 1:80–89
3. Arends D, Prins P, Jansen RC, Broman KW (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:2990–2992
4. Assefa T, Otyama PI, Brown AV, Kalberer SR, Kulkarni RS, Cannon SB (2019) Genome-wide associations and epistatic interactions for internode number, plant height, seed weight and seed yield in soybean. BMC Genomics 20:1–12
5. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献