Abstract
AbstractChanges in the content of radiological reports at population level could detect emerging diseases. Herein, we developed a method to quantify similarities in consecutive temporal groupings of radiological reports using natural language processing, and we investigated whether appearance of dissimilarities between consecutive periods correlated with the beginning of the COVID-19 pandemic in France. CT reports from 67,368 consecutive adults across 62 emergency departments throughout France between October 2019 and March 2020 were collected. Reports were vectorized using time frequency–inverse document frequency (TF-IDF) analysis on one-grams. For each successive 2-week period, we performed unsupervised clustering of the reports based on TF-IDF values and partition-around-medoids. Next, we assessed the similarities between this clustering and a clustering from two weeks before according to the average adjusted Rand index (AARI). Statistical analyses included (1) cross-correlation functions (CCFs) with the number of positive SARS-CoV-2 tests and advanced sanitary index for flu syndromes (ASI-flu, from open-source dataset), and (2) linear regressions of time series at different lags to understand the variations of AARI over time. Overall, 13,235 chest CT reports were analyzed. AARI was correlated with ASI-flu at lag = + 1, + 5, and + 6 weeks (P = 0.0454, 0.0121, and 0.0042, respectively) and with SARS-CoV-2 positive tests at lag = − 1 and 0 week (P = 0.0057 and 0.0001, respectively). In the best fit, AARI correlated with the ASI-flu with a lag of 2 weeks (P = 0.0026), SARS-CoV-2-positive tests in the same week (P < 0.0001) and their interaction (P < 0.0001) (adjusted R2 = 0.921). Thus, our method enables the automatic monitoring of changes in radiological reports and could help capturing disease emergence.
Publisher
Springer Science and Business Media LLC