Evaluation of Effectiveness of Self-Supervised Learning in Chest X-Ray Imaging to Reduce Annotated Images

Author:

Imagawa KunikiORCID,Shiomoto Kohei

Abstract

AbstractA significant challenge in machine learning-based medical image analysis is the scarcity of medical images. Obtaining a large number of labeled medical images is difficult because annotating medical images is a time-consuming process that requires specialized knowledge. In addition, inappropriate annotation processes can increase model bias. Self-supervised learning (SSL) is a type of unsupervised learning method that extracts image representations. Thus, SSL can be an effective method to reduce the number of labeled images. In this study, we investigated the feasibility of reducing the number of labeled images in a limited set of unlabeled medical images. The unlabeled chest X-ray (CXR) images were pretrained using the SimCLR framework, and then the representations were fine-tuned as supervised learning for the target task. A total of 2000 task-specific CXR images were used to perform binary classification of coronavirus disease 2019 (COVID-19) and normal cases. The results demonstrate that the performance of pretraining on task-specific unlabeled CXR images can be maintained when the number of labeled CXR images is reduced by approximately 40%. In addition, the performance was significantly better than that obtained without pretraining. In contrast, a large number of pretrained unlabeled images are required to maintain performance regardless of task specificity among a small number of labeled CXR images. In summary, to reduce the number of labeled images using SimCLR, we must consider both the number of images and the task-specific characteristics of the target images.

Funder

Tokyo City University

Publisher

Springer Science and Business Media LLC

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3