Auto-segmentation of Adult-Type Diffuse Gliomas: Comparison of Transfer Learning-Based Convolutional Neural Network Model vs. Radiologists

Author:

Wan Qi,Kim Jisoo,Lindsay Clifford,Chen Xin,Li Jing,Iorgulescu J. Bryan,Huang Raymond Y.,Zhang Chenxi,Reardon David,Young Geoffrey S.,Qin LeiORCID

Abstract

AbstractSegmentation of glioma is crucial for quantitative brain tumor assessment, to guide therapeutic research and clinical management, but very time-consuming. Fully automated tools for the segmentation of multi-sequence MRI are needed. We developed and pretrained a deep learning (DL) model using publicly available datasets A (n = 210) and B (n = 369) containing FLAIR, T2WI, and contrast-enhanced (CE)-T1WI. This was then fine-tuned with our institutional dataset (n = 197) containing ADC, T2WI, and CE-T1WI, manually annotated by radiologists, and split into training (n = 100) and testing (n = 97) sets. The Dice similarity coefficient (DSC) was used to compare model outputs and manual labels. A third independent radiologist assessed segmentation quality on a semi-quantitative 5-scale score. Differences in DSC between new and recurrent gliomas, and between uni or multifocal gliomas were analyzed using the Mann–Whitney test. Semi-quantitative analyses were compared using the chi-square test. We found that there was good agreement between segmentations from the fine-tuned DL model and ground truth manual segmentations (median DSC: 0.729, std-dev: 0.134). DSC was higher for newly diagnosed (0.807) than recurrent (0.698) (p < 0.001), and higher for unifocal (0.747) than multi-focal (0.613) cases (p = 0.001). Semi-quantitative scores of DL and manual segmentation were not significantly different (mean: 3.567 vs. 3.639; 93.8% vs. 97.9% scoring ≥ 3, p = 0.107). In conclusion, the proposed transfer learning DL performed similarly to human radiologists in glioma segmentation on both structural and ADC sequences. Further improvement in segmenting challenging postoperative and multifocal glioma cases is needed.

Funder

National Institutes of Health award

Conquer Cancer Foundation

National Cancer Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3