Multispectral Imaging Method for Rapid Identification and Analysis of Paraffin-Embedded Pathological Tissues

Author:

Sijilmassi OuafaORCID,López Alonso José-ManuelORCID,Del Río Sevilla AuroraORCID,Barrio Asensio María del CarmenORCID

Abstract

AbstractThe study of the interaction between light and biological tissue is of great help in the identification of diseases as well as structural alterations in tissues. In the present study, we have developed a tissue diagnostic technique by using multispectral imaging in the visible spectrum combined with principal component analysis (PCA). We used information from the propagation of light through paraffin-embedded tissues to assess differences in the eye tissues of control mouse embryos compared to mouse embryos whose mothers were deprived of folic acid (FA), a crucial vitamin necessary for the growth and development of the fetus. After acquiring the endmembers from the multispectral images, spectral unmixing was used to identify the abundances of those endmembers in each pixel. For each acquired image, the final analysis was performed by performing a pixel-by-pixel and wavelength-by-wavelength absorbance calculation. Non-negative least squares (NNLS) were used in this research. The abundance maps obtained for the first endmember revealed vascular alterations (vitreous and choroid) in the embryos with maternal FA deficiency. However, the abundance maps obtained for the third endmember showed alterations in the texture of some tissues such as the lens and retina. Results indicated that multispectral imaging applied to paraffin-embedded tissues enhanced tissue visualization. Using this method, first, it can be seen tissue damage location and then decide what kind of biological techniques to apply.

Funder

Ministerio de Sanidad, Servicios Sociales e Igualdad

Ministerio de Economía y Competitividad

Universidad Complutense de Madrid

Banco Santander

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applications of Artificial Intelligence in Lung Pathology;Surgical Pathology Clinics;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3