Deep Learning Body Region Classification of MRI and CT Examinations

Author:

Raffy Philippe,Pambrun Jean-François,Kumar Ashish,Dubois DavidORCID,Patti Jay Waldron,Cairns Robyn Alexandra,Young Ryan

Abstract

Abstract This study demonstrates the high performance of deep learning in identification of body regions covering the entire human body from magnetic resonance (MR) and computed tomography (CT) axial images across diverse acquisition protocols and modality manufacturers. Pixel-based analysis of anatomy contained in image sets can provide accurate anatomic labeling. For this purpose, a convolutional neural network (CNN)–based classifier was developed to identify body regions in CT and MRI studies. Seventeen CT (18 MRI) body regions covering the entire human body were defined for the classification task. Three retrospective datasets were built for the AI model training, validation, and testing, with a balanced distribution of studies per body region. The test datasets originated from a different healthcare network than the train and validation datasets. Sensitivity and specificity of the classifier was evaluated for patient age, patient sex, institution, scanner manufacturer, contrast, slice thickness, MRI sequence, and CT kernel. The data included a retrospective cohort of 2891 anonymized CT cases (training, 1804 studies; validation, 602 studies; test, 485 studies) and 3339 anonymized MRI cases (training, 1911 studies; validation, 636 studies; test, 792 studies). Twenty-seven institutions from primary care hospitals, community hospitals, and imaging centers contributed to the test datasets. The data included cases of all sexes in equal proportions and subjects aged from 18 years old to + 90 years old. Image-level weighted sensitivity of 92.5% (92.1–92.8) for CT and 92.3% (92.0–92.5) for MRI and weighted specificity of 99.4% (99.4–99.5) for CT and 99.2% (99.1–99.2) for MRI were achieved. Deep learning models can classify CT and MR images by body region including lower and upper extremities with high accuracy.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3