Hybrid Topological Data Analysis and Deep Learning for Basal Cell Carcinoma Diagnosis
-
Published:2024-01-12
Issue:1
Volume:37
Page:92-106
-
ISSN:2948-2933
-
Container-title:Journal of Imaging Informatics in Medicine
-
language:en
-
Short-container-title:J Digit Imaging. Inform. med.
Author:
Maurya Akanksha, Stanley R. JoeORCID, Lama Norsang, Nambisan Anand K., Patel Gehana, Saeed Daniyal, Swinfard Samantha, Smith Colin, Jagannathan Sadhika, Hagerty Jason R., Stoecker William V.
Abstract
AbstractA critical clinical indicator for basal cell carcinoma (BCC) is the presence of telangiectasia (narrow, arborizing blood vessels) within the skin lesions. Many skin cancer imaging processes today exploit deep learning (DL) models for diagnosis, segmentation of features, and feature analysis. To extend automated diagnosis, recent computational intelligence research has also explored the field of Topological Data Analysis (TDA), a branch of mathematics that uses topology to extract meaningful information from highly complex data. This study combines TDA and DL with ensemble learning to create a hybrid TDA-DL BCC diagnostic model. Persistence homology (a TDA technique) is implemented to extract topological features from automatically segmented telangiectasia as well as skin lesions, and DL features are generated by fine-tuning a pre-trained EfficientNet-B5 model. The final hybrid TDA-DL model achieves state-of-the-art accuracy of 97.4% and an AUC of 0.995 on a holdout test of 395 skin lesions for BCC diagnosis. This study demonstrates that telangiectasia features improve BCC diagnosis, and TDA techniques hold the potential to improve DL performance.
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. H. W. Rogers, M. A. Weinstock, S. R. Feldman, and B. M. Coldiron, “Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the us population, 2012,” JAMA Dermatol, vol. 151, no. 10, pp. 1081–1086, 2015, https://doi.org/10.1001/jamadermatol.2015.1187. 2. R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer statistics, 2021,” CA Cancer J Clin, vol. 71, no. 1, pp. 7–33, 2021. 3. Esteva et al., “Dermatologist-level classification of skin cancer with deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, 2017, https://doi.org/10.1038/nature21056. 4. M. A. Marchetti, N. C. F. Codella, S. W. Dusza, D. A. Gutman, B. Helba, A. Kalloo, N. Mishra, C. Carrera, M. E. Celebi, J. L. DeFazio, N. Jaimes, A. A. Marghoob, E. Quigley, A. Scope, O. Yélamos, A. C. Halpern, & International Skin Imaging Collaboration (2018). “Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images.” J Am Acad Dermatol, vol.78, no.2, pp.270-277, https://doi.org/10.1016/j.jaad.2017.08.016 5. H. A. Haenssle, C. Fink, F. Toberer, J. Winkler, W. Stolz, T. Deinlein, R. Hofmann-Wellenhof, A. Lallas, S. Emmert, T. Buhl, M. Zutt, A. Blum, M. S. Abassi, L. Thomas, I. Tromme, P. Tschandl, A. Enk, A. Rosenberger, & Reader Study Level I and Level II Groups, “Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions,” Annals of Oncology, vol. 31, no. 1, pp. 137–143, Jan. 2020, https://doi.org/10.1016/j.annonc.2019.10.013.
|
|