Global Radiomic Features from Mammography for Predicting Difficult-To-Interpret Normal Cases

Author:

Siviengphanom SomphoneORCID,Gandomkar Ziba,Lewis Sarah J.,Brennan Patrick C.

Abstract

AbstractThis work aimed to investigate whether global radiomic features (GRFs) from mammograms can predict difficult-to-interpret normal cases (NCs). Assessments from 537 readers interpreting 239 normal mammograms were used to categorise cases as 120 difficult-to-interpret and 119 easy-to-interpret based on cases having the highest and lowest difficulty scores, respectively. Using lattice- and squared-based approaches, 34 handcrafted GRFs per image were extracted and normalised. Three classifiers were constructed: (i) CC and (ii) MLO using the GRFs from corresponding craniocaudal and mediolateral oblique images only, based on the random forest technique for distinguishing difficult- from easy-to-interpret NCs, and (iii) CC + MLO using the median predictive scores from both CC and MLO models. Useful GRFs for the CC and MLO models were recognised using a scree test. The CC and MLO models were trained and validated using the leave-one-out-cross-validation. The models’ performances were assessed by the AUC and compared using the DeLong test. A Kruskal–Wallis test was used to examine if the 34 GRFs differed between difficult- and easy-to-interpret NCs and if difficulty level based on the traditional breast density (BD) categories differed among 115 low-BD and 124 high-BD NCs. The CC + MLO model achieved higher performance (0.71 AUC) than the individual CC and MLO model alone (0.66 each), but statistically non-significant difference was found (all p > 0.05). Six GRFs were identified to be valuable in describing difficult-to-interpret NCs. Twenty features, when compared between difficult- and easy-to-interpret NCs, differed significantly (p < 0.05). No statistically significant difference was observed in difficulty between low- and high-BD NCs (p = 0.709). GRF mammographic analysis can predict difficult-to-interpret NCs.

Funder

University of Sydney

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3