DilatedToothSegNet: Tooth Segmentation Network on 3D Dental Meshes Through Increasing Receptive Vision

Author:

Krenmayr LucasORCID,von Schwerin Reinhold,Schaudt Daniel,Riedel Pascal,Hafner Alexander

Abstract

AbstractThe utilization of advanced intraoral scanners to acquire 3D dental models has gained significant popularity in the fields of dentistry and orthodontics. Accurate segmentation and labeling of teeth on digitized 3D dental surface models are crucial for computer-aided treatment planning. At the same time, manual labeling of these models is a time-consuming task. Recent advances in geometric deep learning have demonstrated remarkable efficiency in surface segmentation when applied to raw 3D models. However, segmentation of the dental surface remains challenging due to the atypical and diverse appearance of the patients’ teeth. Numerous deep learning methods have been proposed to automate dental surface segmentation. Nevertheless, they still show limitations, particularly in cases where teeth are missing or severely misaligned. To overcome these challenges, we introduce a network operator called dilated edge convolution, which enhances the network’s ability to learn additional, more distant features by expanding its receptive field. This leads to improved segmentation results, particularly in complex and challenging cases. To validate the effectiveness of our proposed method, we performed extensive evaluations on the recently published benchmark data set for dental model segmentation Teeth3DS. We compared our approach with several other state-of-the-art methods using a quantitative and qualitative analysis. Through these evaluations, we demonstrate the superiority of our proposed method, showcasing its ability to outperform existing approaches in dental surface segmentation.

Funder

Universität Ulm

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3