Meta-inductive Justification of Inductive Generalizations

Author:

Schurz GerhardORCID

Abstract

AbstractThe account of meta-induction (G. Schurz, Hume’s problem solved: the optimality of meta-induction, MIT Press, Cambridge, 2019) proposes a two-step solution to the problem of induction. Step 1 consists in a mathematical a priori justification of the predictive optimality of meta-induction, upon which step 2 builds a meta-inductive a posteriori justification of object-induction based on its superior track record (Sect. 1). Sterkenburg (Br J Philos Sci, forthcoming. 10.1086/717068/) challenged this account by arguing that meta-induction can only provide a (non-circular) justification of inductive predictions for now and for the next future, but not a justification of inductive generalizations (Sect. 2). This paper develops a meta-inductive method that does provide an a posteriori justification of inductive generalizations, in the form of exchangeability conditions (Sect. 3). In Sect. 4, a limitation of the proposed method is worked out: while the method can justify weakly lawlike generalizations, the justification of strongly lawlike generalizations (claimed to hold for all eternity) requires epistemic principles going beyond meta-induction based on predictive success.

Funder

Heinrich-Heine-Universität Düsseldorf

Publisher

Springer Science and Business Media LLC

Reference30 articles.

1. Armstrong, D. M. (1983). What is a law of nature? Cambridge University Press.

2. Carnap, R. (1950). Logical foundations of probability. University of Chicago Press.

3. Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge University Press.

4. De Finetti, B. (1937/64). Foresight, its logical laws, its subjective sources. In H. Kyburg & H. Smokler (eds.), Studies in subjective probability (pp. 93–159). John Wiley 1964.

5. Diaconis, P., & Friedman, D. (1980). De Finetti’s theorem for Markov chains. The Annals of Probability, 8, 115–130.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3