Abstract
AbstractTransfer learning uses knowledge learnt in source domains to aid predictions in a target domain. When source and target domains are online, they are susceptible to concept drift, which may alter the mapping of knowledge between them. Drifts in online environments can make additional information available in each domain, necessitating continuing knowledge transfer both from source to target and vice versa. To address this, we introduce the Bi-directional Online Transfer Learning (BOTL) framework, which uses knowledge learnt in each online domain to aid predictions in others. We introduce two variants of BOTL that incorporate model culling to minimise negative transfer in frameworks with high volumes of model transfer. We consider the theoretical loss of BOTL, which indicates that BOTL achieves a loss no worse than the underlying concept drift detection algorithm. We evaluate BOTL using two existing concept drift detection algorithms: RePro and ADWIN. Additionally, we present a concept drift detection algorithm, Adaptive Windowing with Proactive drift detection (AWPro), which reduces the computation and communication demands of BOTL. Empirical results are presented using two data stream generators: the drifting hyperplane emulator and the smart home heating simulator, and real-world data predicting Time To Collision (TTC) from vehicle telemetry. The evaluation shows BOTL and its variants outperform the concept drift detection strategies and the existing state-of-the-art online transfer learning technique.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献