Finding gadgets in incremental code updates for return-oriented programming attacks on resource-constrained devices

Author:

Lehniger KaiORCID,Saad Abdelaziz,Langendörfer Peter

Abstract

AbstractCode-reuse attacks pose a threat to embedded devices since they are able to defeat common security defences such as non-executable stacks. To succeed in his code-reuse attack, the attacker has to gain knowledge of some or all of the instructions of the target firmware/software. In case of a bare metal firmware that is protected from being dumped out of a device, it is hard to know the running instructions of the target firmware. This consequently makes code-reuse attacks more difficult to achieve. This paper presents a novel approach how an attacker can gain knowledge of some of these instructions by sniffing unencrypted incremental updates. These updates exist to reduce the radio reception power for resource-constrained devices. It will be demonstrated how a return-oriented programming (ROP) attack can be accomplished on a MSP430 MCU using only the passively sniffed incremental updates. The generated updates of the R3diff and Delta Generator (DG) differencing algorithms will be under assessment. The evaluation reveals that both of them can be exploited by the attacker and how an attacker can maximize his information gain when dealing with more than one update. It also shows that the DG generated updates leak more information than the R3diff generated updates. This stresses the fact that even delta updates need to be protected with encryption. To defend against this attack, different countermeasures that consider different power consumption scenarios are proposed, but yet to be evaluated.

Funder

Bundesministerium für Bildung und Forschung

IHP GmbH – Leibniz-Institut für innovative Mikroelektronik

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3