E-Watcher: insider threat monitoring and detection for enhanced security

Author:

Wei Zhiyuan,Rauf Usman,Mohsen Fadi

Abstract

AbstractInsider threats refer to harmful actions carried out by authorized users within an organization, posing the most damaging risks. The increasing number of these threats has revealed the inadequacy of traditional methods for detecting and mitigating insider threats. These existing approaches lack the ability to analyze activity-related information in detail, resulting in delayed detection of malicious intent. Additionally, current methods lack advancements in addressing noisy datasets or unknown scenarios, leading to under-fitting or over-fitting of the models. To address these, our paper presents a hybrid insider threat detection framework. We not only enhance prediction accuracy by incorporating a layer of statistical criteria on top of machine learning-based classification but also present optimal parameters to address over/under-fitting of models. We evaluate the performance of our framework using a real-life threat test dataset (CERT r4.2) and compare it to existing methods on the same dataset (Glasser and Lindauer 2013). Our initial evaluation demonstrates that our proposed framework achieves an accuracy of 98.48% in detecting insider threats, surpassing the performance of most of the existing methods. Additionally, our framework effectively handles potential bias and data imbalance issues that can arise in real-life scenarios.

Funder

National Centers of Academic Excellence, NSA

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3