HistoTrust: tracing AI behavior with secure hardware and blockchain technology

Author:

Paulin Dylan,Joud Raphaël,Hennebert ChristineORCID,Moëllic Pierre-Alain,Franco-Rondisson Thibault,Jayles Romain

Abstract

AbstractIn areas of activity where the notion of accountability is strong, the adoption of artificial intelligence (AI) is limited by the opacity and lack of understanding of its behavior, all the more so in the embedded domain where neural networks are compressed and executed on microcontrollers. While the NIST introduced in 2021 several principles allowing the AI explainability, this paper introduces a novel scheme, HistoTrust, combining secure hardware and blockchain technology to bring trust in the traceability of AI behavior and allow its explainability. HistoTrust attests in an Ethereum ledger all the relevant data produced by a physical device, especially the heuristics inferred by AI. Thus, the audition of the ledger allows security verifications and AI behavior analysis.

Funder

EU ECSEL

IRT Nanoelec

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering

Reference23 articles.

1. Jonathon Phillips P, Hahn C, Fontana P, Yates A, Greene KK, Broniatowski DA, Przybocki MA (2021) Four principles of explainable artificial intelligence, NIST Interagency/Internal Report (NISTIR) - 8312

2. Paulin D, Hennebert C, Franco-Rondisson T, Jayles R, Loubier T, Collado R (2021) HistoTrust: Ethereum-based attestation of a data history built with OP-TEE and TPM . In: Proceedings of the 14th international symposium on foundations & practice of security

3. Szilágyi P (2021) EIP-225: Clique proof-of-authority consensus protocol, Ethereum Improvement Proposal. https://eips.ethereum.org/EIPS/eip-225

4. Hardjono T, Smith N (2020) An attestation architecture for Blockchain networks, arXiv:2005.04293 [cs.CR]

5. Chakraborty D, Hanzlik L, Bugiel S (2019) simTPM: User-centric TPM for Mobile Devices, Inproceedings of the 28th Conference USENIX Security Symposium, SSYM’19, USENIX Association, pp. 533-550, isbn: 978-1-939133-06-9

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrating deep learning and metaheuristics algorithms for blockchain-based reassurance data management in the detection of malicious IoT nodes;Peer-to-Peer Networking and Applications;2024-09-05

2. The Future of Ethical AI in Large Language Models;Advances in Computational Intelligence and Robotics;2024-08-30

3. ExplanaSC: A Framework for Determining Information Requirements for Explainable Blockchain Smart Contracts;IEEE Transactions on Software Engineering;2024-08

4. Construction of English Semantic Analysis System Based on AI Technology;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

5. Understanding the Innovations Required for a Green & Secure Artificial Intelligence Paradigm;2023 IEEE 16th Dallas Circuits and Systems Conference (DCAS);2023-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3