The role of Cytochrome b6f in the control of steady-state photosynthesis: a conceptual and quantitative model

Author:

Johnson J. E.ORCID,Berry J. A.ORCID

Abstract

AbstractHere, we present a conceptual and quantitative model to describe the role of the Cytochrome $$\hbox {b}_{6}\hbox {f}$$ b 6 f complex in controlling steady-state electron transport in $$\hbox {C}_{3}$$ C 3 leaves. The model is based on new experimental methods to diagnose the maximum activity of Cyt $$\hbox {b}_{6}\hbox {f}$$ b 6 f in vivo, and to identify conditions under which photosynthetic control of Cyt $$\hbox {b}_{6}\hbox {f}$$ b 6 f is active or relaxed. With these approaches, we demonstrate that Cyt $$\hbox {b}_{6}\hbox {f}$$ b 6 f controls the trade-off between the speed and efficiency of electron transport under limiting light, and functions as a metabolic switch that transfers control to carbon metabolism under saturating light. We also present evidence that the onset of photosynthetic control of Cyt $$\hbox {b}_{6}\hbox {f}$$ b 6 f occurs within milliseconds of exposure to saturating light, much more quickly than the induction of non-photochemical quenching. We propose that photosynthetic control is the primary means of photoprotection and functions to manage excitation pressure, whereas non-photochemical quenching functions to manage excitation balance. We use these findings to extend the Farquhar et al. (Planta 149:78–90, 1980) model of $$\hbox {C}_{3}$$ C 3 photosynthesis to include a mechanistic description of the electron transport system. This framework relates the light captured by PS I and PS II to the energy and mass fluxes linking the photoacts with Cyt $$\hbox {b}_{6}\hbox {f}$$ b 6 f , the ATP synthase, and Rubisco. It enables quantitative interpretation of pulse-amplitude modulated fluorometry and gas-exchange measurements, providing a new basis for analyzing how the electron transport system coordinates the supply of Fd, NADPH, and ATP with the dynamic demands of carbon metabolism, how efficient use of light is achieved under limiting light, and how photoprotection is achieved under saturating light. The model is designed to support forward as well as inverse applications. It can either be used in a stand-alone mode at the leaf-level or coupled to other models that resolve finer-scale or coarser-scale phenomena.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Plant Science,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3