Effect of organic photovoltaic and red-foil transmittance on yield, growth and photosynthesis of two spinach genotypes under field and greenhouse conditions

Author:

Ukwu Uchenna NobleORCID,Agbo Joy Udoka,Muller OnnoORCID,Schrey SilviaORCID,Nedbal LadislavORCID,Niu YuxiORCID,Meier-Grüll MatthiasORCID,Uguru Michael

Abstract

AbstractThe galloping rise in global population in recent years and the accompanying increase in food and energy demands has created land use crisis between food and energy production, and eventual loss of agricultural lands to the more lucrative photovoltaics (PV) energy production. This experiment was carried out to investigate the effect of organic photovoltaics (OPV) and red-foil (RF) transmittance on growth, yield, photosynthesis and SPAD value of spinach under greenhouse and field conditions. Three OPV levels (P0: control; P1: transmittance peak of 0.11 in blue light (BL) and 0.64 in red light (RL); P2: transmittance peak of 0.09 in BL and 0.11 in RL) and two spinach genotypes (bufflehead, eland) were combined in a 3 × 2 factorial arrangement in a completely randomized design with 4 replications in the greenhouse, while two RF levels (RF0: control; RF1: transmittance peak of 0.01 in BL and 0.89 in RL) and two spinach genotypes were combined in a 2 × 2 factorial in randomized complete block design with four replications in the field. Data were collected on growth, yield, photosynthesis and chlorophyll content. Analysis of variance (ANOVA) showed significant reduction in shoot weight and total biomass of spinach grown under very low light intensities as a function of the transmittance properties of the OPV cell used (P2). P1 competed comparably (p > 0.05) with control in most growth and yield traits measured. In addition, shoot to root distribution was higher in P1 than control. RF reduced shoot and total biomass production of spinach in the field due to its inability to transmit other spectra of light. OPV-RF transmittance did not affect plant height (PH), leaf number (LN), and SPAD value but leaf area (LA) was highest in P2. Photochemical energy conversion was higher in P1, P2 and RF1 in contrast to control due to lower levels of non-photochemical energy losses through the Y(NO) and Y(NPQ) pathways. Photo-irradiance curves showed that plants grown under reduced light (P2) did not efficiently manage excess light when exposed to high light intensities. Bufflehead genotype showed superior growth and yield traits than eland across OPV and RF levels. It is therefore recommended that OPV cells with transmittance properties greater than or equal to 11% in BL and 64% in RL be used in APV systems for improved photochemical and land use efficiency.

Funder

This project was funded by the German Federal Ministry of Education and Research (BMBF) in the framework of YESPVNIGBEN project.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Plant Science,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3