Properties of fibre-reinforced self-compacting concrete subjected to prolonged mixing: an experimental and fuzzy logic investigation

Author:

Ghodousian Oveys,Garcia Reyes,Ghodousian Amin,Mohammad Nezhad Ayandeh Mohammad Hossein

Abstract

AbstractThis article investigates the effect of prolonged mixing on the rheological properties and compressive strength of fibre-reinforced self-compacting concretes (FRSCCs). Twenty FRSCC mixes with five cementitious material contents (300, 350, 400, 450 and 500 kg/m3) and three types of fibres and dosages (polypropylene at 0.1%, steel at 1.0%, or synthetic at 1.0%) were first produced. The mixes were then subjected to four mixing intervals of 20 min each (total mixing time = 80 min). The rheological properties of the fresh FRSCC mixes were examined, and the corresponding compressive strength of the hardened FRSCCs was subsequently obtained. Overall, the results from slump flow, T50, V-funnel and L-box tests on fresh mixes, as well as the 28-day compressive strength on the hardened FRSCCs, were in line with previous results reported in the literature. The results show that all mixes lost their self-compacting properties after 80 min of mixing. It was also found that mixes with high cementitious material contents (500 kg/m3) and highest polypropylene fibre dosage were most affected by prolonged mixing, with average losses of 30% and 35% in rheological properties and compressive strength, respectively. Based on the test results, this study proposes a novel fuzzy logic approach to predict the slump loss and at 28-day compressive strength loss of FRSCCs subjected to prolonged mixing. This article contributes towards a better understanding of FRSCCs after prolonged mixing, which can help make informed decisions about their use in new and repaired concrete structures.

Publisher

Springer Science and Business Media LLC

Reference49 articles.

1. Alsaif A, Alharbi YR (2022) Strength, durability and shrinkage behaviours of steel fiber reinforced rubberized concrete. Constr Build Mater 22(345):128295

2. Zeyad AM (2020) Effect of fibers types on fresh properties and flexural toughness of self-compacting concrete. J Market Res 9(3):4147–4158

3. Alsaif A, Garcia R, Figueiredo FP, Neocleous K, Christofe A, Guadagnini M, Pilakoutas K (2019) Fatigue per-formance of flexible steel fibre reinforced rubberised concrete pavements. Eng Struct 15(193):170–183

4. Li N, Jin Z, Long G, Chen L, Fu Q, Yu Y, Zhang X, Xiong C (2021) Impact resistance of steel fiber-reinforced self-compacting concrete (SCC) at high strain rates. J Build Eng 1(38):102212

5. Karimipour A, Ghalehnovi M, De Brito J, Attari M (2020) The effect of polypropylene fibres on the compressive strength, impact and heat resistance of self-compacting concrete. Structures 25:72–87

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3