Author:
Albostami Asad S.,Al-Hamd Rwayda Kh. S.,Alzabeebee Saif
Abstract
AbstractThis paper presents a study to predict the shear strength of reinforced recycled aggregate concrete beams without stirrups using soft computing techniques. The methodology involves the development of a Multi-Objective Genetic Algorithm Evolutionary Polynomial Regression (MOGA-EPR) and Gene Expression Programming (GEP) models. The input variables considered are the longitudinal reinforcement ratio, recycled coarse aggregate ratio, beam cross-section dimensions, and concrete compressive strength. Data collected from the literature were used to train and validate the models. The results showed that the MOGA-EPR and GEP models can accurately predict the shear strength of beams without stirrups. The models also performed better than equations from the codes and literature. This study provides an alternative approach to accurately predict the shear strength of reinforced recycled aggregate concrete beams without stirrups.
Publisher
Springer Science and Business Media LLC
Subject
Building and Construction,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献