Author:
SOLE ALBERTO DE,JIBLADZE MAMUKA,KAC VICTOR G.,VALERI DANIELE
Abstract
AbstractWe prove that all classical affine W-algebras 𝒲(𝔤; f), where g is a simple Lie algebra and f is its non-zero nilpotent element, admit an integrable hierarchy of bi-Hamiltonian PDEs, except possibly for one nilpotent conjugacy class in G2, one in F4, and five in E8.
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Algebra and Number Theory
Reference18 articles.
1. M. Adler, On a trace functional for formal pseudodifferential operators and the symplectic structure of the Korteweg-de Vries equation, Invent. Math. 50 (1979), 219–248.
2. A. Barakat, A. De Sole, V. G. Kac, Poisson vertex algebras in the theory of Hamiltonian equations, Japan. J. Math. 4 (2009), n. 2, 141–252.
3. D. Collingwood, W. McGovern, Nilpotent Orbits in Semisimple Lie Algebra, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993.
4. J. Dadok, V. G. Kac, Polar representations, J. Algebra 92 (1985), no. 2, 504–524.
5. A. De Sole, M. Jibladze, V. G Kac, D. Valeri, Integrable triples in semisimple Lie algebras, arXiv: 2012.12913 (2020).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献