Abstract
AbstractWe prove a version of the Lebesgue differentiation theorem for mappings that are defined on a measure space and take values into a metric space, with respect to the differentiation basis induced by a von Neumann lifting. As a consequence, we obtain a lifting theorem for the space of sections of a measurable Banach bundle and a disintegration theorem for vector measures whose target is a Banach space with the Radon–Nikodým property.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference47 articles.
1. Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis. Vol. 1, vol. 48. American Mathematical Society Colloquium Publications, American Mathematical Society, Providence (2000)
2. Bessaga, C., Pełczyński, A.: Selected Topics in Infinite-dimensional Topology. Polska Akademia Nauk. Instytut Matematyczny, Monografie matematyczne, Warsaw (1975)
3. Bliedtner, J., Loeb, P.A.: The optimal differentiation basis and liftings of $$L^\infty $$. Trans. Am. Math. Soc. 352, 4693–4710 (2000)
4. Bochner, S.: Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind. Fundam. Math. 20, 262–276 (1933)
5. Bogachev, V.I.: Measure Theory, vol. II. Springer, Berlin (2007)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献