Fabrication of flat stainless steel substrates with improved oxidation behavior for metal-supported solid oxide cells using aqueous tape casting

Author:

Yan Yifei,Kesler Olivera

Abstract

AbstractAn aqueous tape casting procedure was developed and optimized to fabricate thick, flat tapes for use as porous stainless-steel substrates for metal-supported solid oxide cells (MS-SOCs). Curling tape is one of the main challenges when using aqueous based slurry formation. This work demonstrated that the sedimentation problem can be solved by increasing solid loading rather than adding excessive binder to raise viscosity. The effect of various casting surfaces on tape curling was also investigated. Materials that allow easy tape release resulted in flatter tapes once the water was evaporated. In addition, substrate oxidation resistance at high temperature was evaluated with respect to starting powder size, sintering extent, and pore former types. High sintering extent that removes or encloses the porosity between steel particles while retaining porosity left by pore formers can effectively prevent breakaway oxidation due to local chromium depletion. Carbon residue in the steel substrates from the slurry organic content can be decreased when formulating the slurry to prevent Cr-rich phase formation in the steel, which severely compromises the substrate oxidation resistance and ductility. By dwelling the substrate in high purity hydrogen, the sensitization can be reversed, but more detailed investigation of the reaction dynamics is needed. By combining the strategies described, this work produced crack-free, flat, 400–500 μm thick stainless steel substrates with 28.7 vol% porosity and improved oxidation resistance compared to previous substrates fabricated by dry pressing of fine powders.

Funder

NSERC

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3