Gas sensing performance of Nb2CTx synthesized by hydrothermal assisted in-situ HF generation etching method

Author:

Okawa Ayahisa,Yang Mingyang,Hasegawa Takuya,Ueda Tadaharu,Cho Sunghun,Sekino Tohru,Yin Shu

Abstract

AbstractThe Nb2CTx prepared by hydrothermal-assisted in-situ HF generation etching was investigated in terms of its gas sensor performance. The Nb2CTx was obtained by mixing Nb2AlC with pure water, hydrochloric acid, and fluoride (LiF or NH4F) and then hydrothermally treated at 180 °C for 24 h. This in-situ HF generation etching by hydrothermal treatment was more efficient and safer in the synthesis of the Nb2CTx than the direct HF etching. The Nb2CTx etched with LiF had relatively wide interlayer spacing because the hydration radius of Li+ was larger than that of NH4+. The results also suggest that Nb2O5 is formed during the synthesis process. These results suggest that interlayer spacing, surface termination, and secondary phases formation can be controlled by the etchant, and that hydrothermal treatment extended the applicability of insoluble etchants. The Nb2CTx synthesized with LiF was evaluated as a gas sensor at room temperature in air in the presence of designated concentrations of 6 different gases, which exhibited good sensitivity and repeatability and fast recovery time, except for NH3. Hydrothermal-assisted etching contributed to providing sufficient interlayer spacing for the gas response without an exfoliation process.

Funder

Iketani Science and Technology Foundation

Dynamic Alliance for Open Innovations Bridging Human, Environment and Materials, the Cooperative Research Program of “Network Joint Research Centre for Materials and Devices.”

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3