Does Counting Different Life Stages Impact Estimates for Extinction Probabilities for Tsetse (Glossina spp)?

Author:

Are Elisha B.ORCID,Hargrove John W.,Dushoff Jonathan

Abstract

AbstractAs insect populations decline, due to climate change and other environmental disruptions, there has been an increased interest in understanding extinction probabilities. Generally, the life cycle of insects occurs in well-defined stages: when counting insects, questions naturally arise about which life stage to count. Using tsetse flies (vectors of trypanosomiasis) as a case study, we develop a model that works when different life stages are counted. Previous branching process models for tsetse populations only explicitly represent newly emerged adult female tsetse and use that subpopulation to keep track of population growth/decline. Here, we directly model other life stages. We analyse reproduction numbers and extinction probabilities and show that several previous models used for estimating extinction probabilities for tsetse populations are special cases of the current model. We confirm that the reproduction number is the same regardless of which life stage is counted, and show how the extinction probability depends on which life stage we start from. We demonstrate, and provide a biological explanation for, a simple relationship between extinction probabilities for the different life stages, based on the probability of recruitment between stages. These results offer insights into insect population dynamics and provide tools that will help with more detailed models of tsetse populations. Population dynamics studies of insects should be clear about life stages and counting points.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,General Agricultural and Biological Sciences,Pharmacology,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Mathematics,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3