Abstract
AbstractInvasion of the surrounding tissue is one of the recognised hallmarks of cancer (Hanahan and Weinberg in Cell 100: 57–70, 2000. 10.1016/S0092-8674(00)81683-9), which is accomplished through a complex heterotypic multiscale dynamics involving tissue-scale random and directed movement of the population of both cancer cells and other accompanying cells (including here, the family of tumour-associated macrophages) as well as the emerging cell-scale activity of both the matrix-degrading enzymes and the rearrangement of the cell-scale constituents of the extracellular matrix (ECM) fibres. The involved processes include not only the presence of cell proliferation and cell adhesion (to other cells and to the extracellular matrix), but also the secretion of matrix-degrading enzymes. This is as a result of cancer cells as well as macrophages, which are one of the most abundant types of immune cells in the tumour micro-environment. In large tumours, these tumour-associated macrophages (TAMs) have a tumour-promoting phenotype, contributing to tumour proliferation and spread. In this paper, we extend a previous multiscale moving-boundary mathematical model for cancer invasion, by considering also the multiscale effects of TAMs, with special focus on the influence that their directional movement exerts on the overall tumour progression. Numerical investigation of this new model shows the importance of the interactions between pro-tumour TAMs and the fibrous ECM, highlighting the impact of the fibres on the spatial structure of solid tumour.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Agricultural and Biological Sciences,Pharmacology,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Mathematics,Immunology,General Neuroscience
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献