Epidemic Management via Imperfect Testing: A Multi-criterial Perspective

Author:

Palma GiuseppeORCID,Caprioli DamianoORCID,Mari LorenzoORCID

Abstract

AbstractDiagnostic testing may represent a key component in response to an ongoing epidemic, especially if coupled with containment measures, such as mandatory self-isolation, aimed to prevent infectious individuals from furthering onward transmission while allowing non-infected individuals to go about their lives. However, by its own nature as an imperfect binary classifier, testing can produce false negative or false positive results. Both types of misclassification are problematic: while the former may exacerbate the spread of disease, the latter may result in unnecessary isolation mandates and socioeconomic burden. As clearly shown by the COVID-19 pandemic, achieving adequate protection for both people and society is a crucial, yet highly challenging task that needs to be addressed in managing large-scale epidemic transmission. To explore the trade-offs imposed by diagnostic testing and mandatory isolation as tools for epidemic containment, here we present an extension of the classical Susceptible-Infected-Recovered model that accounts for an additional stratification of the population based on the results of diagnostic testing. We show that, under suitable epidemiological conditions, a careful assessment of testing and isolation protocols can contribute to epidemic containment, even in the presence of false negative/positive results. Also, using a multi-criterial framework, we identify simple, yet Pareto-efficient testing and isolation scenarios that can minimize case count, isolation time, or seek a trade-off solution for these often contrasting epidemic management objectives.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,General Agricultural and Biological Sciences,Pharmacology,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Mathematics,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3