A New Method for Low Density Distribution Modeling and Near Threatened Species: The Study Case of Plectrohyla Guatemalensis

Author:

Ballesteros MiguelORCID,Díaz-Avalos Carlos,Hernández Omar,Garro Guillermo

Abstract

AbstractWe introduce a model that can be used for the description of the distribution of species when there is scarcity of data, based on our previous work (Ballesteros et al. J Math Biol 85(4):31, 2022). We address challenges in modeling species that are seldom observed in nature, for example species included in The International Union for Conservation of Nature’s Red List of Threatened Species (IUCN 2023). We introduce a general method and test it using a case study of a near threatened species of amphibians called Plectrohyla Guatemalensis (see IUCN 2023) in a region of the UNESCO natural reserve “Tacaná Volcano”, in the border between Mexico and Guatemala. Since threatened species are difficult to find in nature, collected data can be extremely reduced. This produces a mathematical problem in the sense that the usual modeling in terms of Markov random fields representing individuals associated to locations in a grid generates artificial clusters around the observations, which are unreasonable. We propose a different approach in which our random variables describe yearly averages of expectation values of the number of individuals instead of individuals (and they take values on a compact interval). Our approach takes advantage of intuitive insights from environmental properties: in nature individuals are attracted or repulsed by specific features (Ballesteros et al. J Math Biol 85(4):31, 2022). Drawing inspiration from quantum mechanics, we incorporate quantum Hamiltonians into classical statistical mechanics (i.e. Gibbs measures or Markov random fields). The equilibrium between spreading and attractive/repulsive forces governs the behavior of the species, expressed through a global control problem involving an energy operator.

Funder

Consejo Nacional de Ciencia y Tecnología

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3