Mathematical Modelling of Parasite Dynamics: A Stochastic Simulation-Based Approach and Parameter Estimation via Modified Sequential-Type Approximate Bayesian Computation

Author:

Twumasi ClementORCID,Cable Joanne,Pepelyshev Andrey

Abstract

AbstractThe development of mathematical models for studying newly emerging and re-emerging infectious diseases has gained momentum due to global events. The gyrodactylid-fish system, like many host-parasite systems, serves as a valuable resource for ecological, evolutionary, and epidemiological investigations owing to its ease of experimental manipulation and long-term monitoring. Although this system has an existing individual-based model, it falls short in capturing information about species-specific microhabitat preferences and other biological details for different Gyrodactylus strains across diverse fish populations. This current study introduces a new individual-based stochastic simulation model that uses a hybrid $$\tau $$ τ -leaping algorithm to incorporate this essential data, enhancing our understanding of the complexity of the gyrodactylid-fish system. We compare the infection dynamics of three gyrodactylid strains across three host populations. A modified sequential-type approximate Bayesian computation (ABC) method, based on sequential Monte Carlo and sequential importance sampling, is developed. Additionally, we establish two penalised local-linear regression methods (based on L1 and L2 regularisations) for ABC post-processing analysis to fit our model using existing empirical data. With the support of experimental data and the fitted mathematical model, we address open biological questions for the first time and propose directions for future studies on the gyrodactylid-fish system. The adaptability of the mathematical model extends beyond the gyrodactylid-fish system to other host-parasite systems. Furthermore, the modified ABC methodologies provide efficient calibration for other multi-parameter models characterised by a large set of correlated or independent summary statistics.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3