The Distance Between: An Algorithmic Approach to Comparing Stochastic Models to Time-Series Data

Author:

Sherlock Brock D.,Boon Marko A. A.,Vlasiou Maria,Coster Adelle C. F.ORCID

Abstract

AbstractWhile mean-field models of cellular operations have identified dominant processes at the macroscopic scale, stochastic models may provide further insight into mechanisms at the molecular scale. In order to identify plausible stochastic models, quantitative comparisons between the models and the experimental data are required. The data for these systems have small sample sizes and time-evolving distributions. The aim of this study is to identify appropriate distance metrics for the quantitative comparison of stochastic model outputs and time-evolving stochastic measurements of a system. We identify distance metrics with features suitable for driving parameter inference, model comparison, and model validation, constrained by data from multiple experimental protocols. In this study, stochastic model outputs are compared to synthetic data across three scales: that of the data at the points the system is sampled during the time course of each type of experiment; a combined distance across the time course of each experiment; and a combined distance across all the experiments. Two broad categories of comparators at each point were considered, based on the empirical cumulative distribution function (ECDF) of the data and of the model outputs: discrete based measures such as the Kolmogorov–Smirnov distance, and integrated measures such as the Wasserstein-1 distance between the ECDFs. It was found that the discrete based measures were highly sensitive to parameter changes near the synthetic data parameters, but were largely insensitive otherwise, whereas the integrated distances had smoother transitions as the parameters approached the true values. The integrated measures were also found to be robust to noise added to the synthetic data, replicating experimental error. The characteristics of the identified distances provides the basis for the design of an algorithm suitable for fitting stochastic models to real world stochastic data.

Funder

Australian Research Counci

University of New South Wales

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3