Abstract
AbstractThe dynamics of a chemical reaction network (CRN) is often modeled under the assumption of mass action kinetics by a system of ordinary differential equations (ODEs) with polynomial right-hand sides that describe the time evolution of concentrations of chemical species involved. Given an arbitrarily large integer $$K \in {\mathbb N}$$
K
∈
N
, we show that there exists a CRN such that its ODE model has at least K stable limit cycles. Such a CRN can be constructed with reactions of at most second-order provided that the number of chemical species grows linearly with K. Bounds on the minimal number of chemical species and the minimal number of chemical reactions are presented for CRNs with K stable limit cycles and at most second order or seventh-order kinetics. We also show that CRNs with only two chemical species can have K stable limit cycles, when the order of chemical reactions grows linearly with K.
Funder
Engineering and Physical Sciences Research Council
National Science Foundation
Merton College, University of Oxford
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Agricultural and Biological Sciences,Pharmacology,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Mathematics,Immunology,General Neuroscience
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献