Generation of Orchard and Tree-Child Networks

Author:

Cardona Gabriel,Ribas Gerard,Pons Joan CarlesORCID

Abstract

AbstractPhylogenetic networks are an extension of phylogenetic trees that allow for the representation of reticulate evolution events. One of the classes of networks that has gained the attention of the scientific community over the last years is the class of orchard networks, that generalizes tree-child networks, one of the most studied classes of networks. In this paper we focus on the combinatorial and algorithmic problem of the generation of binary orchard networks, and also of binary tree-child networks. To this end, we use that these networks are defined as those that can be recovered by reversing a certain reduction process. Then, we show how to choose a “minimum” reduction process among all that can be applied to a network, and hence we get a unique representation of the network that, in fact, can be given in terms of sequences of pairs of integers, whose length is related to the number of leaves and reticulations of the network. Therefore, the generation of networks is reduced to the generation of such sequences of pairs. Our main result is a recursive method for the efficient generation of all minimum sequences, and hence of all orchard (or tree-child) networks with a given number of leaves and reticulations. An implementation in C of the algorithms described in this paper, along with some computational experiments, can be downloaded from the public repository https://github.com/gerardet46/OrchardGenerator. Using this implementation, we have computed the number of binary orchard networks with at most 6 leaves and 8 reticulations.

Funder

Ministerio de Ciencia e Innovación

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,General Agricultural and Biological Sciences,Pharmacology,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Mathematics,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3