Designing Weights for Quartet-Based Methods When Data are Heterogeneous Across Lineages

Author:

Casanellas MartaORCID,Fernández-Sánchez Jesús,Garrote-López Marina,Sabaté-Vidales Marc

Abstract

AbstractHomogeneity across lineages is a general assumption in phylogenetics according to which nucleotide substitution rates are common to all lineages. Many phylogenetic methods relax this hypothesis but keep a simple enough model to make the process of sequence evolution more tractable. On the other hand, dealing successfully with the general case (heterogeneity of rates across lineages) is one of the key features of phylogenetic reconstruction methods based on algebraic tools. The goal of this paper is twofold. First, we present a new weighting system for quartets () based on algebraic and semi-algebraic tools, thus especially indicated to deal with data evolving under heterogeneous rates. This method combines the weights of two previous methods by means of a test based on the positivity of the branch lengths estimated with the paralinear distance. is statistically consistent when applied to data generated under the general Markov model, considers rate and base composition heterogeneity among lineages and does not assume stationarity nor time-reversibility. Second, we test and compare the performance of several quartet-based methods for phylogenetic tree reconstruction (namely QFM, wQFM, quartet puzzling, weight optimization and Willson’s method) in combination with several systems of weights, including weights and other weights based on algebraic and semi-algebraic methods or on the paralinear distance. These tests are applied to both simulated and real data and support weight optimization with weights as a reliable and successful reconstruction method that improves upon the accuracy of global methods (such as neighbor-joining or maximum likelihood) in the presence of long branches or on mixtures of distributions on trees.

Funder

Agencia Estatal de Investigación

Agència de Gestió d’Ajuts Universitaris i de Recerca

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,General Agricultural and Biological Sciences,Pharmacology,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Mathematics,Immunology,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3