Enumeration of Rooted Binary Unlabeled Galled Trees

Author:

Agranat-Tamir LilyORCID,Mathur Shaili,Rosenberg Noah A.

Abstract

AbstractRooted binary galled trees generalize rooted binary trees to allow a restricted class of cycles, known as galls. We build upon the Wedderburn-Etherington enumeration of rooted binary unlabeled trees with n leaves to enumerate rooted binary unlabeled galled trees with n leaves, also enumerating rooted binary unlabeled galled trees with n leaves and g galls, $$0 \leqslant g \leqslant \lfloor \frac{n-1}{2} \rfloor $$ 0 g n - 1 2 . The enumerations rely on a recursive decomposition that considers subtrees descended from the nodes of a gall, adopting a restriction on galls that amounts to considering only the rooted binary normal unlabeled galled trees in our enumeration. We write an implicit expression for the generating function encoding the numbers of trees for all n. We show that the number of rooted binary unlabeled galled trees grows with $$0.0779(4.8230^n)n^{-\frac{3}{2}}$$ 0.0779 ( 4 . 8230 n ) n - 3 2 , exceeding the growth $$0.3188(2.4833^n)n^{-\frac{3}{2}}$$ 0.3188 ( 2 . 4833 n ) n - 3 2 of the number of rooted binary unlabeled trees without galls. However, the growth of the number of galled trees with only one gall has the same exponential order 2.4833 as the number with no galls, exceeding it only in the subexponential term, $$0.3910n^{\frac{1}{2}}$$ 0.3910 n 1 2 compared to $$0.3188n^{-\frac{3}{2}}$$ 0.3188 n - 3 2 . For a fixed number of leaves n, the number of galls g that produces the largest number of rooted binary unlabeled galled trees lies intermediate between the minimum of $$g=0$$ g = 0 and the maximum of $$g=\lfloor \frac{n-1}{2} \rfloor $$ g = n - 1 2 . We discuss implications in mathematical phylogenetics.

Funder

National Science Foundation

Planning and Budgeting Committee of the Council for Higher Education of Israel

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3