Crustal deformation from GNSS measurement and earthquake mechanism along Pieniny Klippen Belt, Southern Poland

Author:

Ansari KutubuddinORCID,Walo Janusz,Simanjuntak Andrean V. H.,Wezka Kinga

Abstract

AbstractThe dynamic geological features of the Pieniny Klippen Belt (PKB) in southern Poland are nowadays a focal point of researchers as it is recognised as an active zone of crustal discontinuity. In the present study, we employed long-term analysis of ground-based global navigation satellite system (GNSS) measurements (from 2004 to 2020) to probe the crustal deformation, strain rates, and rotational rates in the PKB unit and the surrounding region, i.e., Magura Nappe (MN) and Podhale Flysch (PF) units. Measured velocities from GNSS observables are modelled by the auto-regressive integrated moving average (ARIMA) method to comprehend the long-term tectonic deformation. Our results showed that the ARIMA-modelled velocity varied from ~ 0.15 to ~ 8.86 mm/yr, indicating about 8.71 mm/yr difference along all units. Such differences suggest that crustal slip along the active thrusts and folds is the major factor causing regional deformation. The strain rates in PKB are also varying from the western to the eastern part. The rotational rates in PKB show a counterclockwise (CCW) pattern similar to the strain rates. These patterns suggesting that the PKB was rotated in the CCW direction with a large angle during the Miocene period. Finally, we analysed the seismicity for a period from 2004 to 2020 by using Bayesian moment tensor inversion and multivariate Bayesian inversion. The Bayesian inversion was applied based on bootstrapping chain analysis to figure out the earthquake mechanism using moment tensor inversion for the mainshock that occurred in Poland on 20 July 2018. The inversion results for the 2018 earthquake resolved a thrusting mechanism with nodal plane-1 having a strike of 346°, dip of 32°, and rake of 92° and a nodal plane-2 with a strike of 163°, dip of 58°, and rake of 89°. Since the seismicity in the Poland region has experienced less significant earthquakes in the last century, it is reasonable to attribute this lower seismic activity to the correspondingly low slip rates discerned through geodetic monitoring efforts.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3