Effect of reservoir pressure and total organic content on adsorbed gas production in shale reservoirs: a numerical modelling study

Author:

Mansi MoatazORCID,Almobarak Mohamed,Lagat Christopher,Xie Quan

Abstract

AbstractAdsorbed gas plays a key role in organic-rich shale gas production due to its potential to contribute up to 60% of the total gas production. The amount of gas potentially adsorbed on organic-rich shale is controlled by thermal maturity, total organic content (TOC), and reservoir pressure. Whilst those factors have been extensively studied in literature, the factors governing desorption behaviour have not been elucidated, presenting a substantial impediment in managing and predicting the performance of shale gas reservoirs. Therefore, in this paper, a simulation study was carried out to examine the effect of reservoir depth and TOC on the contribution of adsorbed gas to shale gas production. The multi-porosity and multi-permeability model, hydraulic fractures, and local grid refinements were incorporated in the numerical modelling to simulate gas storage and transient behaviour within matrix and fracture regions. The model was then calibrated using core data analysis from literature for Barnett shales. Sensitivity analysis was performed on a range of reservoir depth and TOC to quantify and investigate the contribution of adsorbed gas to total gas production. The simulation results show the contribution of adsorbed gas to shale gas production decreases with increasing reservoir depth regardless of TOC. In contrast, the contribution increases with increasing TOC. However, the impact of TOC on the contribution of adsorbed gas production becomes minor with increasing reservoir depth (pressure). Moreover, the results suggest that adsorbed gas may contribute up to 26% of the total gas production in shallow (below 4,000 feet) shale plays. These study findings highlight the importance of Langmuir isothermal behaviour in shallow shale plays and enhance understanding of desorption behaviour in shale reservoirs; they offer significant contributions to reaching the target of net-zero CO2 emissions for energy transitions by exhibiting insights in the application of enhanced shale gas recovery and CO2 sequestration — in particular, the simulation results suggest that CO2 injection into shallow shale reservoirs rich in TOC, would give a much better performance to unlock the adsorbed gas and sequestrate CO2 compared to deep shales.

Funder

Curtin University

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3