Management of environmental streaming data to optimize Arctic shipping routes

Author:

Zhang Zhihua,Crabbe M. James C.

Abstract

AbstractDynamic accurate predictions of Arctic sea ice, ocean, atmosphere, and ecosystem are necessary for safe and efficient Arctic maritime transportation; however a related technical roadmap has not yet been established. In this paper, we propose a management system for trans-Arctic maritime transportation supported by near real-time streaming data from air-space-ground-sea integrated monitoring networks and high spatio-temporal sea ice modeling. As the core algorithm of integrated monitoring networks, a long short-term memory (LSTM) neural network is embedded to improve Arctic sea ice mapping algorithms. Since the LSTM is localized in time and space, it can make full use of streaming data characteristics. The sea ice–related parameters from satellite remote sensing raw data are used as the input of the LSTM, while streaming data from shipborne radar networks and/or buoy measurements are used as training datasets to enhance the accuracy and resolution of environmental streaming data from outputs of LSTM. Due to large size of streaming data, the proposed management system of trans-Arctic shipping should be built on a cloud distribution platform using existing wireless communications networks among vessels and ports. Our management system will be used by the ongoing European Commission Horizon 2020 Programme “ePIcenter.”

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Fragility of the Ocean: From Coral Reef Protection to Deep-Sea Mining;Sustainable Development Across Pacific Islands;2024

2. Mining and Analysis of the Traffic Information Situation in the South China Sea Based on Satellite AIS Data;International Journal of Data Warehousing and Mining;2023-10-27

3. Remote control? Chinese satellite infrastructure in and above the Arctic global commons;The Geographical Journal;2023-01-22

4. DEEP-SEA MINING FOR RENEWABLE TECHNOLOGIES: A CASE STUDY FOR USING BIG DATA;International Journal of Big Data Mining for Global Warming;2022-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3